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Abstract

In this work we outline a machine learning strategy developed to estimate
the uncertainty introduced by a turbulence model for the prediction of a
turbulent separated flows. The approach is based on the introduction of
eigenvalue perturbations of the Reynolds stress anisotropy; the amount of
perturbation is predicted by a random forest algorithm trained on high-
fidelity simulations of the flow over a wavy wall. The proposed method is
applied to the flow in an asymmetric diffuser and demonstrates how the
approach correctly identifies the regions in which modeling errors occur
and accurately quantifies the amount of errors when compared to experi-
mental observations.

Introduction

Reynolds-averaged Navier-Stokes (RANS) simulations are the standard
for complex flow simulations in industry, because the higher fidelity
direct numerical simulations (DNS) and large eddy simulations (LES)
are computationally too expensive for most applications. The RANS
averaging introduces a term in the momentum equations that requires
further modeling assumptions or simplifications, i.e. it is unclosed. This
term is referred to as the Reynolds stress tensor and, over the past several
decades, a large body of research has been devoted to its representation,
namely the introduction of a turbulence model. Linear eddy viscosity
models are a popular group of turbulence models that relate the strain
rate tensor to the Reynolds stress anisotropy tensor through an isotropic
eddy viscosity. Yet, because of their inherent assumptions they do not
perform well on many realistic flows (Craft et al., 1996; Schobeiri and
Abdelfattah, 2013). Particularly flows involving strong rotation or
adverse pressure gradients, as encountered often in turbomachinery
applications, represent a great challenge to turbulence models. It is indis-
pensable for meaningful RANS predictions to have an estimate of the
uncertainty in the simulations associated with the turbulence model.
This type of uncertainty is directly related to the assumptions made in
the model formulation, and therefore referred to as model-form
uncertainty.

Data from experiments or from higher fidelity simulations presents an
opportunity to enhance the predictive capabilities of RANS simulations.
Traditionally, data has been used in the context of turbulence modeling
only for model calibration and to define model corrections. Almost all
turbulence models involve some empirical constants which are tuned to
optimize the RANS predictions with respect to specific calibration cases.
These calibration cases often are canonical flows such as decaying grid
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turbulence or plane homogeneous shear flow (Hanjali¢ and Launder, 1972). The quality of the resulting predic-
tions depends on how relevant the calibration cases are to the case of interest. To extend the applicability of a
turbulence models, corrections and modifications can be introduced, which also are calibrated on suitable data
(Pope, 1978; Sarkar, 1992). Over the last decade, the main advancements of turbulence models, however, were
made by capturing more physics, not by expanding the usage of data.

Recently, with the increased popularity of data science tools, efforts have been devoted to train machine learn-
ing models for RANS simulations. Some have incorporated sparse data into their simulations to improve predic-
tions. There also have been efforts to use data to predict the Reynolds stresses, or to correct Reynolds stress
predictions, as well as to identify and quantify uncertainty associated with the Reynolds stress predictions. Singh
et al. (2017) used inverse modeling and trained neural networks to estimate a correction factor to the production
term in the eddy viscosity transport equation of the Spalart-Allmaras turbulence model. They did not do for-
mally quantify the uncertainty, but they studied the sensitivity of their predictions with respect to the training
data set. Wang and Dow (2010) studied the structural uncertainties of the # — @ turbulence model by modeling
the eddy viscosity discrepancy (i.e. the difference between reference high-fidelity data and RANS predictions) as
a random field. Their approaches is based on Monte Carlo sampling, but given its slow convergence, a consider-
able number of simulations are required in order to obtain meaningful uncertainty estimates. Wu et al. (2018)
used random forests to predict Reynolds stress discrepancies. The predictions were used to correct the turbulence
model predictions and enhance the RANS results, without estimation of the structural uncertainty. Geneva and
Zabaras (2019) trained a deep Bayesian neural network to predict directly the Reynolds stress tensor. Their
framework incorporates uncertainty estimation for the trained black-box model, but does not extend to other tur-
bulence models, and furthermore uncertainty was estimated was using Monte Carlo sampling. Ling and
Templeton (2015) trained support vector machines, Adaboost decision trees, and random forests to identify
regions of uncertainty in the flow, without making quantitative estimates of the uncertainty in the RANS
predictions.

In the present work, we are seeking an efficient data driven approach to quantifying uncertainty for general
RANS models. As mentioned earlier, prior works in the literature either do not provide uncertainty estimates,
they do so for specific models only, or they rely on expensive Monte Carlo sampling to characterize the
uncertainty.

We are therefore introducing a data-driven framework based on an extension of the eigenvalue perturbations
to the Reynolds stress anisotropy tensor developed by Emory et al. (2013). In the original approach, namely the
data-free variant, the eigenvalues are uniformly perturbed to limiting states corresponding to 1, 2, and 3 compo-
nent turbulence, leading to three independent simulations, in addition to the (unperturbed) baseline. However,
perturbing everywhere in the domain leads to overly conservative uncertainty estimates because the model is
assumed to introduce potential errors everywhere. The new, data-driven framework is used to predict a local per-
turbation strength in every spatial location based on the local mean flow quantities. The predictions carried out
using the machine learning perturbations demonstrate that the uncertainty estimates provide credible quantifica-
tion of the #ue modeling errors, and are more effective than the original data-free uncertainty estimates. We also
carry out careful sensitivity analysis to grid resolution and inflow perturbations to confirm that the turbulence
closure is the main source of uncertainty in the present test cases.

Turbulent separated flows in a diffuser

In turbomachinery applications, diffusers are used to decelerate the flow and increase the static pressure of the
fluid. They are positioned downstream of compressors and turbines to increase their total-to-static isentropic effi-
ciency. The operating principle is simply a change in cross-sectional area, but space constraints and reduction of
losses often lead to configurations that are prone to flow separation and sensitivity to distortions of the incoming
flow stream. Predictions of the turbulent flow in a diffuser represents the challenge in this work.

Test case setup

The turbulent flow in planar asymmetric diffuser first described by Obi et al. (1993) is considered. Figure 1
shows the setup: A channel is expanded from inflow width A to outflow width 4.7H. In the expansion section,
the bottom wall is opening up at a 10° angle. The corners at the beginning and the end of that slope are
rounded with a radius of 9.7H.

The inflow is fully turbulent at Re = 17,800 based on bulk velocity and inflow channel height H. The result-
ing flow has several interesting features. First, there is a flow separation on the downward slope. After this
expanding section, the flow reattaches to the bottom wall. Finally, a new boundary layer develops downstream of
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Figure 1. Asymmetric plane diffuser setup. Figure 2. Wavy wall setup.

the reattachment point. All these features are very challenging for turbulence models, making this an interesting
test case. ODbi et al. (1993) were the first to obtain experimental data for this setup. Later, Buice and Eaton
(1995) repeated those experiments, devoting more attention on the reduction of 3 dimensional effects in the
flow.

RANS simulations were carried out in OpenFOAM using the 4 — ¢ turbulence model. Fully turbulent
channel flow was used as inflow condition at x/H = —10. The outlet was at x/H = 60. The baseline calcula-
tion had a structured mesh with 9,472 cells, 148 in the x and 64 in the y direction.

Mesh sensitivity

A mesh convergence study was performed using five levels: the baseline mesh and each two coarser and two
finder meshes. The individual grid resolutions are given in Table 1, and the non-dimensional grid spacing of the
wall-adjacent cells in the inflow section is A" = 3.5 for the baseline resolution. For each level change, the total
number of cells changed by a factor of roughly 2. Profiles of the streamwise velocity for the different meshes are
plotted in Figure 2. There is a very good agreement between the results from all mesh resolutions implying a
relatively low sensitivity of the flow solutions.

Inflow sensitivity

In order to build confidence in the predictions, the sensitivity of the solution to the inflow conditions was inves-
tigated. More specifically, the inlet velocity profile was distorted to vary the centerline velocity between 90% and
110% of its nominal value, while the bulk velocity and thereby the Reynolds number were kept constant.
Figure 3 shows the corresponding streamwise velocity profiles. The baseline is plotted in black, and ten simula-
tions with distorted inflows are plotted in red. Near the inflow at x/H = —10, the difference in the inflow pro-
files is well visible. Before the beginning of the expanding section at x/H = —1, those differences have already
been smeared for the most part, and from there for all downstream segments there is little difference between the
profiles, especially with regards to the flow behavior near the bottom wall.

Table 1. Mesh resolutions of diffuser simulations. Baseline computations are based on level 3.

Level 1 2 3 4 5

Ny 75 104 148 209 296

n, 32 46 64 90 128
Ntot 2,400 4,784 9,472 18,810 37,888
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Figure 3. Mesh convergence of diffuser simulations. Profiles of streamwise velocity at different x locations. Baseline
is 9,472 cells.

Validation

None of the simulations carried out so far indicate flow separation. Both the grid convergence and the inflow
distortion studies provide confidence in the computations as very limited sensitivity to boundary conditions and
numerical errors is observed.

The baseline simulation is compared against experimental data from Buice and Eaton (2000) in Figure 4.
While the flow remains attached at all times in the RANS simulation, the experimental data reveals the existence
of a large flow separation that has not been captured by the simulation. The simulations are overpredicting the
streamwise velocity in the lower half of the channel and underpredicting it in the upper half.

Data-free uncertainty quantification

The results presented so far illustrate a typical situation in computational engineering: simulations do not accur-
ately represent experimental findings. Given the simplicity of the present application and the careful sensitivity
analysis carried out to assess both numerical errors and boundary conditions, it is clear that the only source of
inaccuracy in the simulations is the turbulence model. There is no shortage of different turbulence models
(Iaccarino, 2001; Cokljat et al., 2003) that are known to provide better representation of the effect of adverse
pressure gradients. However, it is useful to establish if it is possible to assess the effect of model inaccuracy and
to estimate bounds on the predictions to understand the sensitivity of the results to the modeling assumptions.

| L | |
-10 =1 6 14

x/H+5.0u/Uy,

Figure 4. Inflow sensitivity of diffuser simulations. Profiles of streamwise velocity at different x locations. Baseline in
black, distorted inflows in red.
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Framework

Emory et al. introduced perturbations to eigenvalues of the normalized Reynolds stress anisotropy tensor towards
limiting states within the range of realizability (Emory et al., 2001, 2013). This technique is data-free and, in its
basic form, parameter-free, and it allows to estimate model form uncertainty stemming from turbulence models.
The starting point is to define the Reynolds stress anisotropy tensor

G=0_ls (1)

where R;; = u/;1/; is the Reynolds stress tensor and £ is the turbulent kinetic energy. 4; can be diagonalized to
ﬂij - ”imAmnvjn (2)

Vi is the matrix of orthonormal eigenvectors, and A,,, is the traceless diagonal matrix of eigenvalues 4,, with
A1 > A2 > A3. These eigenvalues can be visualized as a position in a barycentric map (Banerjee et al., 2007). In
that map, all realizable states of turbulence are limited to within a triangle, and the corners of the triangle corres-
pond to limiting states of turbulence with 1, 2, and 3 components respectively. Figure 5 shows this triangle as
well as one realizable location inside that triangle x;7 coming from a low fidelity simulation. This location can
be perturbed towards the three limiting states, and a perturbed set of eigenvalues A can be reconstructed from
the perturbed location x = x7r + Ap(x; — x7r). In the data-free framework, these perturbed locations are the
corners of the triangle (Ag = 1.0). A perturbed Reynolds stress anisotropy tensor and a perturbed Reynolds

stress tensor follow:
* * * * 1
dij = sz‘mAm”an, Rz; = 2k dzj —+ 551] (3)

These eigenvalue perturbations add three perturbed simulations to the baseline calculations\comma \; one for
each limiting state, leading to a total of four calculations. The uncertainty estimates are constructed by comput-
ing the range of values across the four calculations. The minimum and maximum values of the range form envel-

opes for any quantity of interest.

Validation

The framework of eigenvalue perturbations is applied to the present case of the planar asymmetric diffuser.
Figure 6 shows the results of the baseline case, the uncertainty envelopes, and the experimental results. The
uncertainty envelopes are constructed using the data-free eigenvalue perturbations towards each of the three limit-
ing states with Az = 1.0.

The uncertainty envelopes cover the experimental results in most locations, and in particular at the bottom
wall, where the perturbations suggest that the baseline calculation might be overpredicting the streamwise
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Figure 5. Diffuser simulation. Profiles of streamwise velocity at different x locations with experimental data.
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Figure 6. Data-free, uniform eigenvalue perturbation. Figure 7. Data-driven, local eigenvalue perturbation.
Perturbed locations for 1c, 2c, and 3c limiting state
marked as grey dots.

velocity. Unlike the mesh study and the inflow sensitivity study from the previous section, this analysis correctly
indicates that there might be a region of flow recirculation at the bottom wall.

The uncertainty estimates, however, go beyond the experimental data, in some regions substantially, in other
words seem to overestimate the modeling errors in some locations. This is expected because the perturbations are
targeting all possible extreme states of turbulence anisotropy without consideration of their plausibility.

For practical applications, it would be useful to bound the uncertainty estimates more tightly, in order to
have a more clear indication of the plausible modeling errors. The data-free framework perturbs the
Reynolds stresses everywhere in the domain all the way to the respective limiting state. Yet, the Reynolds
stress predictions of the turbulence model do not have the same level of inaccuracy throughout the domain.
Therefore, it would be desirable to be able to vary the perturbation strength of the eigenvalue perturbations
locally. That might allow to reduce the perturbation strength in regions, where less inaccuracy of the turbu-
lence model is expected.

Data-driven uncertainty quantification

Perturbation strength

We study a data-driven approach to predict a local eigenvalue perturbation strength based on flow features. Here,
we define the local perturbation strength p as the distance in barycentric coordinates between the unperturbed
and the perturbed projection of the Reynolds stress. p is predicted by a machine learning model using physically
relevant flow features f; as input. Figure 7 illustrates the meaning of p in the barycentric map. The original loca-
tion x77 is perturbed towards the same three extreme states as in the data-free approach. The perturbed locations,
marked by grey dots, are not more than p away from the original position. In the example from the illustration,
that means the 3-component limiting state is reached, while the perturbations towards the 1- and 2-component
limits are smaller. The perturbed locations are still always within the triangle and therefore within the constraints
of realizability; if the predicted perturbation strength is larger than the distance to the respective limiting state
then the perturbed location is at that limiting state. This definition of the perturbation strength implies that the
effective perturbations cannot be greater than for the data-free case, but they can be smaller.

Machine learning model

A random regression forest is chosen as the machine learning regression model. Random forests are ensemble
learners that are based on number of decision trees (Breiman, 2001). The details of regression trees and random
forests are discussed in the following subsections. The random forest is implemented using the OpenCV library.
More details on the implementation are provided in the appendix.
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Regression trees

Regression trees are decision trees that are used to predict ordered variables (Breiman et al., 1984). Decision trees
are algorithms that work by defining a hierarchical structure of nodes at which splits are performed. Starting
from the root node, at each split one feature is compared against a corresponding threshold value. Depending on
the difference between the feature values and the corresponding threshold, the algorithm continues at one of two
child nodes. This continues until a so-called leaf node is reached, which assigns a value. Decision trees can be
visualized in a tree like structure, hence the name, with the initial root node at the top and the leaves at the
bottom.

They are built starting from the root and advancing recursively, finding the optimal split at each node. For the
regression problem, the optimal split of a decision tree is the one that minimizes the root mean squared error
over all features. Each regression tree is trained on a different random subset of the training set. Furthermore, at
each node the optimal split is found for a random subset of features, called the active variables. Adding this ran-
domness ensures that the individual regression trees are decorrelated. The value at a leaf node is the average over
all the training samples that fall into that particular leaf node.

This structure enables regression trees to learn non-linear functions. They are also robust to extrapolation,
since they cannot produce predictions outside the range of the training data labels, and to uninformative features,
which are features that are considered but not relevant for problem (Ling and Templeton, 2015; Milani et al.,
2017).

Random forests

Random forests are a supervised learning algorithm. They are ensemble learners, meaning that they leverage a
number of simpler models to make a prediction. In this case of a random forest, the simpler models are regres-
sion trees.

In machine learning models, the means squared error can be decomposed into the squared bias of the esti-
mate, the variance of the estimate, and the irreducible error:

MSEG) = (5[] — ) 42| (Fo - £[F]) |+ 22
~ irreducible error (4)

squared bias

where _;[(x) is the model prediction and f'(x) is the true value. As the name suggests, the irreducible error stems
from noise in the data and cannot be reduced through the model. Bias is introduced through assumptions that
are made in the model before the training. The more flexible a model is, the lower is its bias. Variance is related
to generalization. It measures how much the model predictions would change if trained on different data. High
variance indicates strong overfitting and poor generalization.

In many machine learning models one can vary the model flexibility. A more flexible model is able to learn
more complex relationships and will therefore reduce the bias of the predictions. At the same time, a more flex-
ible model increases the likelihood of overfitting to the training data and thereby of increasing the variance. The
search for the optimum model complexity to achieve both low bias and low variance is commonly referred to as
the bias-variance trade-off.

Binary decision trees are very flexible and tend to overfit strongly to the training data. Hence, they have a low
bias and a high variance. Random forests base their predictions on a number of decorrelated decision trees.
Decorrelation is achieved by bagging, which is the training on random subsets of the training data, as well as ran-
domly sampling the active variables at each split. Since the trees are decorrelated, the variance of the random
forest predictions is reduced and generalization improved. At the same time, random forests are able to keep the
low bias of the decision trees. This makes random forests, despite their simplicity, powerful predictors for a range
of applications (Breiman, 2001).

Features

Decision trees, and machine learning algorithms in general, require the definition of a set of features that repre-
sent the mapping from input to outputs.

In the present scenario, i.e. an incompressible turbulent flow, a set of twelve features was chosen. In order to
be able to generalize to cases other than the training data set, all features are non-dimensional. The computation
of the features requires knowledge of the following variables, which are either constant or solved for during the
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RANS calculations: the mean velocity and its gradient, the turbulent kinetic energy as well as its production and
its dissipation rates, the minimum wall distance, the molecular viscosity, and the speed of sound.

The list of features is given in Table 2. For vectors the L, norm, and for second-order tensors the Frobenius
norm is used. The first five features are traces of different combinations of the mean rate of strain and mean rate
of rotation tensors, normalized by the turbulence time scale. One other normalization was tested, using the
mean strain and mean rotation time scales, yet using the turbulence time scale yielded better results, i.e. smaller
overall MSE. The sixth feature is a non-dimensionalized Q criterion, which is commonly used to define vortex
regions. The seventh feature is the ratio of the turbulence kinetic energy production rate to its dissipation rate,
governing the turbulence kinetic energy as a key parameter in characterizing the turbulence of the flow. Next are
the ratio of turbulence to mean strain time scale, the Mach number, and the turbulence intensity. The turbu-
lence Reynolds number, which can also be interpreted as a non-dimensional wall distance, is the eleventh
feature. Finally, a marker function indicating deviation from parallel shear flow is used as a feature, as scalar tur-
bulence viscosity models are geared often geared towards and validated on such parallel shear flows (Gorlé et al.,
2012).

Training case setup

Training data is used to determine the model parameters, not to evaluate the model’s performance, because
unlike the test case it cannot provide an unbiased model assessment. The periodic wavy wall case was used to
obtain training data for the random regression forest model. It is defined as a turbulent channel with a flat top
wall and a sinusoidal bottom wall as illustrated in Figure 8. The ratio of channel height to wave length is
H /A = 1.0, and the ratio of wave height to wave length is 24/4 = 0.1. The wave is repeating periodically, and
on its downward slope a flow separation occurs. An unperturbed baseline calculation was run using the # — ¢
turbulence model.

Training case mesh sensitivity

The simulations use a structured grid with a resolution of 16,384 cells, 128 in each the x and the y direction.
The computational domain covers the space from one wave crest to the next one as indicated by the dashed lines
in the figure, with periodic inflow and outflow boundary conditions. A mesh convergence study was carried out
with two coarser and two finer meshes. The factor between the total number of cells is approximately 2 between
the refinement levels, and the individual grid resolutions are given in Table 3. Figure 9 is showing profiles of the
streamwise velocity for the mesh convergence study. There is barely any difference between the different calcula-
tions. Features for the random forest training were computed from the baseline case, and labels were computed

Table 2. Non-dimensional features used for the random regression forest.

# Description Formula # Description Formula
P
1 Divergence of tr(z;S) 7 Ratio of k production to dissipation —
velocity ¢
2 2c2 i i Sk
2 Trace of S tr(zg S°) 8 Ratio of turbulence to mean strain —
time scale ¢
3 Trace of $* tr(z35%) 9 Mach number chlﬁ
0
2 21172 ; ; vk
4 Trace of W tr(zf W*) 10 Turbulence intensity Tl
2
22 41172 2 _ (Vkd,,
5 Trace of W<S tr(f W2s?) 11 Turbulence Reynolds number min 5—01/,2
W2 — s2 s;| vk
6 Q criterion 2—52 12 Marker indicating deviation from M_L
W2 +S gl llall
shear flow

The following variables are used: the mean rate of strain and its norm S; = (1/2)(Vu; + Vuy), S = ||S||;; the mean rate of rotation and its norm
Wi = (1/2)(Va; — Vuj), W = ||W||; the unit vector along the streamline s; = u;/||u||,, the gradient of the streamline aligned velocity g; = s;(du;/dx;); and
the turbulence time scale 7 = (k/e).
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Figure 8. Data-free, uniform eigenvalue perturbation. Profiles of streamwise velocity at different x locations.

from both the baseline case and higher fidelity data, with each RANS grid node being one data point. The labels
are defined as the actual distances in the barycentric domain between the location predicted by the baseline cal-
culation and the higher fidelity one. The higher fidelity data is statistically converged DNS data from Rossi
(2006), which was linearly interpolated to the RANS cell locations using the nearest four DNS cell locations for
each RANS cell.

Hyperparameters

In machine learning models, hyperparameters are parameters that are not learned during model training, but that
instead are set before training and used to define the functional form of the model and control the learning
process. The impact of four different hyperparameters on the learning of the random regression forest model is
studied: the maximum tree depth, the minimum sample count, the active variable count, and the number of
trees. The minimum sample count is the minimum number of samples required at a particular node in order to
do further splitting. The active variable count is the number of features randomly chosen at each node to find
the optimal split. For each of the first three hyperparameters a couple of different values were studied over a
range of 1 to 200 regression trees. Figure 10a—c show the training and testing error of the random forest training
of those studies plotted against the number of trees. Each solid line corresponds to the training error for a specific
value of the particular hyperparameter, and each dotted line corresponds to the testing error. To improve read-
ability, these errors are plotted for every third number of trees only. For these studies, the dataset was first ran-
domly shuffled and then split into a training set comprising 80% of the samples and a testing set comprising
20% of the samples. The shuffling was the same for all individual tests, so that every random forest model in
this subsection was trained on the same training samples and tested on the same testing samples. Only after
making a choice on the hyperparameters, a final random forest was trained on the full dataset to achieve best per-
formance when employed at the asymmetric diffuser case.

The results from the maximum tree depth study are shown in Figure 10a. The training and test errors are
plotted in solid and dotted lines, respectively, against the number of trees. The tested values are 5, 10, 15, and

Table 3. Mesh resolutions of wavy wall simulations. Baseline is level 3.

Level 1 2 3 4 5

Ny 64 91 128 181 256

ny, 64 91 128 181 256
Ntot 4,096 8,281 16,384 32,761 65,536
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Figure 9. Mesh convergence of wavy wall simulations. Profiles of streamwise velocity at different x locations.
Baseline is 16,384 cells.

20. There is no significant difference between 15 and 20. The errors are a bit larger for 10 and significantly
larger for 5, which clearly outperformed all other cases in terms of generalization. Because it showed the best per-
formance for training and test error, a maximum tree depth of 15 was chosen. 20 was not chosen, because it
increased computational costs without improving prediction performance.

Figure 10b shows the results from the minimum sample count study. The tested values are 10, 20, and 30.
All three cases could do better in terms of generalization, with the cases with the larger minimum sample counts
doing slightly better. In turn, the overall performance clearly is improving with smaller values. Because the
enhanced performance for the smaller values was more clear than the reversed gain in generalisation, 10 was
chosen as minimum sample count.

The number of active variables was varied between 2 and 10 at an increment of 2 as shown in Figure 10c.
The results do not vary greatly in terms of generalization. Larger numbers of active variables lead to lower train-
ing and test errors. The training errors for 6, 8, and 10 are the lowest and do not differ significantly. The test
error for 6 is slightly larger than for 8 and 10. 8 was chosen as active variable count, because shows overall a
better performance than smaller values while leading to a stronger decorrelation between the individual regression
trees than the similarly performing case with value 10.

Over all three preceding hyperparameter studies the impact of the number of trees can be observed. There is a
steep gain in performance for small numbers of trees followed by a quick saturation. The computational costs of
evaluation a random forest model scale linearly with the number of trees. Therefore, the minimum number of
trees for maximum model performance is sought. In none of the cases, significant improvement was observed for
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510 -2
<720 4
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0.03 1 0.015 1 0.015 %
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% 0.02 L& oo 0.0 ]
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Figure 10. Training error (solid) and testing error (dotted) vs. number of trees for different (a) maximum tree depth
values, (b) minimum sample count values, and (c) active variable count values.
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Figure 11. Predictions vs. labels on wavy wall training data for random forest.

a number of trees exceeding 50. Therefore, the final random regression forest was trained for 50 regression trees
on the whole dataset. The root mean squared error is 0.00311. Figure 11 shows a scatter plot of predictions vs.
labels for the training data. There is a good agreement between the predicted and the true perturbation
strengths.

Feature importance

The OpenCV library used to train the random regression forest allows for the computation of feature import-
ance, i.e. a quantitative assessment of the impact that each feature has on the final prediction. Table 4 presents
the normalized feature importance scores. There is still a lot to learn about the importance of different features
for data-driven uncertainty quantification, but we will make a few initial observations.

The two most important features of the trained model are the non-dimensional wall distance and the marker
indicating deviation from parallel shear flow. The flow features in the present cases that are the most challenging
for turbulence models are flow separation, flow reattachment, and development of a new boundary layer. All
these features occur at or near the wall, supporting the significance of the wall distance. The marker for deviation
from parallel shear flow was developed specifically to identify regions where the linear eddy viscosity assumption
becomes invalid (Gorlé et al., 2014). The importance of this feature indicates that the model was able to high-
light this relationship.

Table 4. Normalized feature importance scores.

Feature Score # Score # Score
Divergence of 0.000315 Trace of W?S? 0.062866 Mach number 0.074620
velocity
Trace of §? 0.012120 Q criterion 0.123786 Turbulence intensity 0.090864
Trace of S3 0.000271 Ratio of k 0.014759 Turbulence 0.213744
production to Reynolds number
dissipation
Trace of W? 0.189448 Ratio of turbulence 0.014662 Marker indicating 0.202545
to mean strain time deviation from shear
scale flow
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The features based on combinations of the mean rate of rotation were clearly more important than the ones
based on combinations of the mean rate of strain, with the trace of the squared mean rotation rate tensor being
ranked as third most important feature. Other relevant features are the Q criterion, identifying vortex regions,
and the turbulence intensity. The turbulence level naturally has an impact on the accuracy of the turbulence
model. As expected the divergence of the velocity is not a significant feature for this incompressible flow case.

It is important to point out that the feature importance is strongly related to the baseline turbulence model
and related to the training dataset.

Validation

Finally, this new, data-driven framework was applied to the planar asymmetric diffuser. The random forest
model was used to predict a local perturbation strength at every cell during the RANS calculations. As for the
data-free uncertainty envelopes, three perturbed calculations were carried out for the three limiting states of tur-
bulence. Figure 12 shows the results of the baseline case, the results of the uncertainty bands from the data-
driven eigenvalue perturbations, and the experimental results.

The uncertainty envelopes still display the same general trend, suggesting an overprediction of the streamwise
velocity in the lower half of the channel. As expected from permitting smaller perturbation strengths, the envel-
opes are narrower than they are when using the data-free framework from the previous section. There are no
regions where the uncertainty is substantially overestimated: In most regions, the envelopes reach just up to or at
least very near to the experimental data. Thus, for the test case the data-driven uncertainty estimates give a rea-
sonable estimate of the modeling errors and therefore the true uncertainty in the flow predictions.

Conclusion and future work

This study is the first step into using data to enhance uncertainty estimation. Based on an existing data-free
framework, a new, data-driven approach was introduced in which the perturbations to the Reynolds stress anisot-
ropy eigenvalues is estimated using computable flow features. A random forest was trained on a wavy wall high-
fidelity dataset and tested on the prediction of the turbulent separated flow in a diffuser case, with promising
early results. The newly predicted uncertainty envelopes closely tracks the experimental data. At the same time,
there are still a number of open questions and directions for future work on this topic.

For this study, only one training case and one test case were used. One open question is what impact the
choice of the training case(s) has on the results of the test case(s) in this framework. The two cases were relatively
similar in terms of the flow features they exhibit, and we expect that this is a necessary condition for accurate
uncertainty predictions. Using training data from different cases could make the model applicable in a wider
range of test cases.

Just like the choice of test case, the choice of features is an aspect that requires further investigation. This
process could be informative for learning which flow features have a stronger impact on uncertainty in the flow
predictions. Similarly, the non-dimensionalization of the features gives room for exploration, which again is
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Figure 12. Data-driven, local eigenvalue perturbation. Profiles of streamwise velocity at different x locations.
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crucial for generalization. A different time scale was tested for some of the features, but there are more options to
consider.

Lastly, different choices could be made regarding the machine learning model. The current choice is a random
regression forest. A hyperparameter study was used to decide on a set of parameters, but their effect on the
results of the test case are not conclusive. To reduce computational expenses, it would be compelling to find the
minimum number of trees needed before the quality of the uncertainty predictions breaks down. And beyond
random regression forests, it is useful to compare different types of machine learning approaches.

Appendix: Implementation Notes

Machine learning in OpenCV
The random forest was implemented in C++ using the OpenCV library. Although the OpenCV library was ori-

ginally developed for computer vision applications, it does include several machine learning models. The
Rtrees class is used for the random forest. A number of parameters can be set, such as the hyperparameters
discussed in the Machine Learning Model section. When the calculateVarImportance property is set
to true, the importance of the features can be reported after model training. For the random forests used for this
study, the training took on the order of 10 s per model. The parameters of the trained models can be exported
and imported in a different application.

Connecting OpenFOAM and OpenCV

All RANS calculations were performed using OpenFOAM. For online predictions of the perturbation strength,
OpenFOAM and OpenCV were therefore connected. A modified # — € turbulence model class was implemented
allowing for data-driven eigenvalue perturbations. This turbulence model had an instance of Rtrees as
member variable. In the constructor of the turbulence model, the random forest was initialized and the model
parameters from a trained random forest were imported.

Perturbations in OpenFOAM

During the RANS simulations in OpenFOAM, there are two loops over all cells in the discretized computational
domain. For each cell, first all features are computed from the mean flow quantities. Next, the local perturbation
strength is predicted using the random forest. Then, an eigenvalue decomposition of the local Reynolds stress
anisotropy tensor is performed. The eigenvalues are projected into the barycentric domain and perturbed at the
respective perturbation strength, and a perturbed Reynolds stress anisotropy tensor is reconstructed. These loops
over all cells are the only difference during runtime between the modified and the standard # — & turbulence
model.

A test was performed, where the perturbation strength in the modified turbulence model was hard-coded to
zero. The results were identical with the results from the standard turbulence model.

Computational costs

The computation of the data-driven eigenvalue perturbations leads to an increase in costs for the RANS simula-
tions. Compared to the calculations with the baseline # — ¢ turbulence model, the observed runtime increases by
a factor of 2—3. There are two reasons for this increase. First, the calculations associated with the perturbations
took some time. Of that time, calculating features, evaluating the random forest, and perturbing the Reynolds
stresses accordingly took typically 2—3%, 80—85%, and 15%, respectively. The dominant evaluation time of the
random forest scales linearly with the number of trees, so this is a number that potentially could be reduced.
Second, the perturbations had an effect of the convergence of the solver, resulting in more iterations that had to
be completed. While the data-driven perturbations took roughly the same amount of time for every case, the
convergence difficulties were dependent on the particular limiting state.
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